Integrated archaeobotanical studies in a protohistoric settlement of Central Spain: El Llano de la Horca (Santorcaz, Madrid)

Paloma Uzquiano1,2, Cosimo D’Oronzo2, Girolamo Fiorentino2, Blanca Ruiz-Zapata3, Mª José Gil-García3, Gonzalo Ruiz-Zapatero4, Gabriela Märtens5, Miguel Contreras5 and Enrique Baquedano5

1 Dept. Prehistoria, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain; p_uzquiano@hotmail.com
2 Lab. of Archaeobotany and Palaeoecology, Università del Salento, 73100 Lecce, Italy; girolamo.fiorentino@unisalento.it
3 Dept. of Geology, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain; blanca.ruiz@uah.es
4 Dept. Prehistoria, Universidad Complutense, 28040 Madrid, Spain; gonzalor@ghis.ucm.es
5 Museo Arqueológico Regional de la Comunidad de Madrid, 28800 Alcalá de Henares, Spain; gabriela.martens@madrid.org

Summary: This paper presents a series of archaeobotanical analyses (pollen, charcoal and seed/fruits) carried out in central Spain at the site known as “El Llano de la Horca”, a protohistoric settlement with Bronze Age (BA) and Late Iron Age (LIA) occupations. Archaeobotanical data was integrated to relevant information concerning settlement patterns and economy of similar sites in the study area.

Key words: archaeobotany, El Llano de la Horca, central Spain, Bronze Age, Late Iron Age.

INTRODUCTION

El Llano de la Horca is located in the north-eastern part of Madrid, Central Spain (Märtens et al., 2009), on the top of a plane hill at 879 m asl. It covers virtually all the 14 ha of the hill, stressing a defensive function and the visual control of the surrounding territory (Fig. 1).

Extended digs are nowadays concentrated in an extensive area covering 1500 m2 (Sector I) where the most complete stratigraphic sequence was recorded. The oldest occupation (3600±80 BP) corresponds to a BA smaller settlement. The Carpetanian settlement (LIA) is found over this stratum. Four occupation phases were recorded, covering a period between the 3rd and 1st centuries BC. (Märtens et al., 2009). All the archaeobotanical samples were recovered from this sector.

RESULTS AND DISCUSSION

Pollen analysis indicated an open landscape dominated by NAP taxa, Juniperus and an important representation of NPM Glomus fasciculatum related to deforestation processes. Pollen results were regrouped according to their ecologic al affinities and human activities. Several kinds of land-use were observed along the LIA occupation phases of this settlement: a strong herding character is dominant during phases I-II, whereas it decreases during phase III to become dominant again during phase IV.

Anthracological studies (Fig. 2) revealed Juniperus thurifera and Quercus ilex as main the arboreal taxa managed, indicating an alternation between the exploitation of northern and southern exposures of plate hills during the LIA occupation phases. Pinus sylvestris-nigra, P. pinaster-pinea were also present in very low amounts. Charcoal analysis also revealed relevant amounts of Quercus faginea and the presence of Fraxinus angustifolia suggesting the frequentation of valleys and thereby the exploitation of the nearby alluvial territories. Quercus suber, Erica sp. and Fabaceae appeared only in the Carpetanian period (LIA).

Archaeological charcoal: natural or human impact on the vegetation

Carpological analysis evidenced mainly cereals with some sporadic legumes and weeds. Naked wheat was dominant followed by hulled barley in minor amounts, and some erratic occurrences of hulled wheat.

MAIN CONCLUSIONS

Archaeobotanical data was correlated with the geographical setting and archaeological context of the site (Mártens et al., 2009). The evolution of settlement patterns in Central Spain (Urbina, 2007), as well as the economy of other Carpetanian sites (Cerdeño et al., 1992; Quero et al., 2005), was also considered to evaluate territory management regarding vegetal resource potentiality since the Bronze Age (BA). Changes were expected as a consequence of different socio-economic realities in this site, especially when the settlement became an important Carpetanian oppidum.

The combined results pictured a subsistence system based on cereal agriculture. Furthermore, livestock breeding and metalwork activities seemed to have resulted in an important deforestation in order to gain place for crop fields and cattle feeding to cope with the needs of the Carpetanian growing community.

REFERENCES

FIGURE 2. Anthracological data obtained in the Bronze Age (R-19) and Late Iron Age (R-13A) occupations phases of the settlement.