Fuel wood use in a lime kiln at Egnathia (South-eastern Italy) during Late Antiquity

Angela Stellati1, 2 and Girolamo Fiorentino 1

1 Laboratory of Archaeobotany and Palaeoecology, Department of Cultural Heritage, University of Salento, via D. Birago 64, 73100 Lecce; girolamo.fiorentino@unisalento.it
2 PhD student, University of Bari, Italy; angela.stellati@libero.it

Summary: During the last archaeological investigation at Egnathia (South-eastern Italy) a lime kiln was found. The anthracological study, jointed to taphonomical and size analyses of the charcoals, allow us to define the use of wood as fuel and to recognize specific utilization of timber (carpentry wood) derived from dismissed structures.

Key words: lime kiln, charcoal analyses, Late Antiquity, wood management, south-eastern Italy.

INTRODUCTION

Since 2009, the collaboration between the Laboratory of Archaeobotany and Palaeoecology of the University of Salento and the Department of Antiquity of the University of Bari has allowed to apply tailored archaeobotanical analysis at Egnathia. The aim of this work is to study human-environmental interaction, in particular: i) the exploitation of plant resources, ii) the identification of the catchment area.

The site is settled on the Adriatic coast of Apulia region, on the border between Messapia and Peucezia ancient regions (Fig. 1). Its location favored a long anthropic history, from the Bronze Age (16th-15th century BC) till the medieval period (10th-15th century AD). In particular, Egnathia has played a central role in the trade between the Mediterranean Basin and the Apulian hinterland during the Roman period and the Late Antiquity.

DATA AND RESULT

The lime kiln of Egnathia is located to the south of the Episcopal basilica (Fig. 2). The furnace was recovered filled with its original charge: calcareous stones and fuel. The furnace has a truncated cone shape and a diameter of about 3 meters.

FIGURE 1. Location of Egnathia.

Archaeological investigations show a series of Late Antiquity structures built after the earthquake of 365 AD. In this period, in fact, Egnathia underwent an urban reorganization: some public buildings, such as the Baths, were re-functionalized as productive structures (e.g. lime kilns).

Actually, few studies were conducted on ancient lime kilns especially focusing on structures and on the reconstruction of the different phases of lime production (Jackson, 1973; Gelichi and Novara, 1990; Baragli, 1998; Petrella, 2007). Many ethnoarchaeological studies give information about lime kiln fuel used in Italy (De Guio, 1995; Bandini et al., 1999; De Guio and Bressan 2000; Balenzano and Moresi, 2004) and in other countries in the last century (Adam, 1994).

FIGURE 2. Lime kiln found in the area to the south of the basilica.

The samples were collected from all layers of the furnace. The charcoals belong to two main dimensional categories: small (< 1 cm) and bigger charcoals (> 7 cm). The latter are slightly vitrified and characterized by radial cracking; they constitute the main part of the assemblage. The quantitative difference between the two size categories could be due to combustion activity...
Archaeological charcoal: natural or human impact on the vegetation

who has acted more destructively towards the smaller branches (Fig. 3).

Anthracological analyses identified four taxa: *Fraxinus* sp., *Olea europaea*, *Pistacia lentiscus* and *Pyrus/Sorbus* type (Rosaceae/Maloideae). *Pyrus/Sorbus* has been recognized also as fuel in the hypocaust of the tepidarium. The larger charcoals belong exclusively to *Fraxinus* sp., while smaller fragments are related to the other species.

DISCUSSION

The ethnological examples describe the use of olive stones, almond shells and small branches as lime kiln fuel, probably due to their ability to guarantee a rich flame (Adam, 1994; Balenzano and Moresi, 2004); only in few cases wood was used (Bandini et al., 1999).

In our study the fuel wood selected seems to respond to a particular demand: ash wood, defined by high calorific value, represents a probable re-utilization of carpentry material. The other taxa were used as branches to develop a flame able to reach the upper calcareous stones (Fig. 4).

CONCLUSION

The anthracological analysis of the lime kiln of *Egnathia* shows the use of fuel derived from carpentry wood and available wood taxa growing near the site: in this way the best result in terms of calorific value and duration is obtained.

ACKNOWLEDGEMENTS

We need to thanks Prof.ssa Cassano R., Prof. Fioriello S. C. and all their team of archaeologists for giving us the opportunity to work on *Egnathia*.

REFERENCES


